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Abstract. This is an expository article on geometry. As a special case
of the Atiyah-Singer index theorem, I calculate the index of the Euler
operator.
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1. Introduction

The index of the Euler operator is an interesting special case of the index
theorem which can be proved directly by Hodge theory. It is equal to the
Euler characteristic χ, which is a topological invariant.

2. Atiyah-Singer geometric cases: Euler operator

I discuss the index theorem for certain standard geometric operators,
starting with the Euler operator. In a future article, I will discuss the
relationship with the Gauss-Bonnet theorem.

Let M a smooth manifold. Define the Euler operator as the operator
d + d∗, on differential forms, but restricted to mapping even forms to odd
forms.

We write D = (d+d∗)ev, where the ev superscript indicates the restriction
to even forms. This notation indicates the generalisation to Dirac operators.

(1) D : Ωeven(M) → Ωodd(M)

The formal adjoint is D∗ = ((d+ d∗)ev)∗ = (d+ d∗)odd, the restriction to
odd forms mapping in the other direction.
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Define the index of D as follows, briefly. The genesis of the problem will
be covered in a future article. D has finite-dimensional kernel and cokernel.
So we can define the index as the difference of their dimensions.

(2) indexD = dimKerD − dimCokerD
Because CokerD = KerD∗, rewrite the index as

(3) indexD = dimKerD − dimKerD∗

Recall that the square of d + d∗ is the Hodge Laplacian on forms, ∆ =
dd∗ + d∗d. Define harmonic forms as H∗ = Ker∆.

Proposition 1 (Reduction to Dirac case).

(4) Ker∆ = KerD

Proof. See [1] (13.18 prec.)
This result changes the problem from second degree to first degree. Fur-

thermore, this is compatible with the grading. Restricting operators now to
forms of degree k, we have

Theorem 1 (Main theorem of Hodge theory). The space of harmonic k-
forms is isomorphic to the de Rham cohomology space of degree k.

(5) Hk(M) ≃ Hk(M).

Proof. See [1] (13.18)

Theorem 2 (Euler operator). The Euler characteristic is equal to the index
of the Euler operator.

Proof by Hodge theory. (See [1], (13.20))
Write the Euler characteristic χ as the difference of the dimension of the

even and odd degree cohomology, which is a step to reframe the situation
as:

(6) χ(M) =
∑

k even

dimHk(M)−
∑
k odd

dimHk(M)

By Hodge theory above (5), the cohomology vector spaceH∗ is isomorphic
to the space of harmonic forms H∗, in a manner compatible with the grading
so (6) is also the difference of the dimensions of even and odd harmonic
forms.

(7) χ(M) =
∑

k even

dimHk(M)−
∑
k odd

dimHk(M)

Now use the fact that the space of harmonic forms is the kernel of the
Euler operator, (4).

Recalling that the Euler operator is the restriction to even forms, the first
term is dim KerD, and the second term dim KerD∗, and the difference is
the index (3).
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Therefore we have proved that the Euler characteristic of the manifold,
is the index of the Euler operator.

3. Conclusion

Geometric problems on the solutions of equations can be solved by the
index theorem.
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